Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.176
Filtrar
1.
Small ; : e2400650, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566534

RESUMO

Holey graphenic nanomaterials with porosity within the basal plane attract significant interest. It is observed that the perforation of graphene can enhance the specific surface area of the nanosheet, ensuring effective wetting and penetration of electrolytes to the electrode surface, facilitating rapid charge transfer, and boosting the electrocatalytic efficacy of the transducers. This study reports the first example of nitrogen-doped holey reduced graphene oxide with a mesoporous morphology of the graphene basal plane (N-MHG). It is shown that N-MHG can be synthesized through a one-step hydrothermal treatment of GO using NH3 and H2O2. A straightforward procedure for the purification of N-MHG has also been developed. AFM, TEM, and Raman analyses have revealed that N-MHG possesses a highly mesoporous network structure with a pore size ranging from 10 to 50 nm. X-ray photoelectron spectroscopy data have indicated a partial reduction of the graphene oxide sheets during the etching process but also show a 3-5 times higher content of C═O and O-C═O fragments compared to rGO. This could account for the remarkable stability of the N-MHG aqueous suspension. An electrochemical sensor for dopamine analysis is assembled on a glassy carbon electrode with N-MHG/Nafion membrane and characterized by cyclic voltammetry and electrochemical impedance spectroscopy.

2.
Bipolar Disord ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558302

RESUMO

BACKGROUND: Treatment of refractory bipolar disorder (BD) is extremely challenging. Deep brain stimulation (DBS) holds promise as an effective treatment intervention. However, we still understand very little about the mechanisms of DBS and its application on BD. AIM: The present study aimed to investigate the behavioural and neurochemical effects of ventral tegmental area (VTA) DBS in an animal model of mania induced by methamphetamine (m-amph). METHODS: Wistar rats were given 14 days of m-amph injections, and on the last day, animals were submitted to 20 min of VTA DBS in two different patterns: intermittent low-frequency stimulation (LFS) or continuous high-frequency stimulation (HFS). Immediately after DBS, manic-like behaviour and nucleus accumbens (NAc) phasic dopamine (DA) release were evaluated in different groups of animals through open-field tests and fast-scan cyclic voltammetry. Levels of NAc dopaminergic markers were evaluated by immunohistochemistry. RESULTS: M-amph induced hyperlocomotion in the animals and both DBS parameters reversed this alteration. M-amph increased DA reuptake time post-sham compared to baseline levels, and both LFS and HFS were able to block this alteration. LFS was also able to reduce phasic DA release when compared to baseline. LFS was able to increase dopamine transporter (DAT) expression in the NAc. CONCLUSION: These results demonstrate that both VTA LFS and HFS DBS exert anti-manic effects and modulation of DA dynamics in the NAc. More specifically the increase in DA reuptake driven by increased DAT expression may serve as a potential mechanism by which VTA DBS exerts its anti-manic effects.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38561622

RESUMO

INTRODUCTION: Prolactinomas are the most common type of pituitary gland tumors that secrete overly prolactin. They account for approximately 60% of all hormone-secreting hypophysis tumors. AIM: This study aims to analyze gender differences in patients with prolactinomas who were operated on transsphenoidal surgery and conduct a single-center retrospective analysis of patient data. MATERIAL AND METHODS: This study evaluated the medical records of 109 patients (61 females and 48 males) from 2009 to 2019 at Feofaniya Clinical Hospital of the State Administration of Affairs in Kyiv, Ukraine. The primary criterion for including patients was a Serum Prolactin (PRL) level of over 100 ng/ml and the presence of a pituitary adenoma (PA) as observed on MRI. Additionally, the histological examination needed to confirm the presence of Prolactin-Secreting Pituitary Adenomas (PSPAs) without plurihormonal activity through both microscopy and immunohistochemical (IHC) staining. RESULTS: Significant differences in preoperative PRL levels were not observed. However, males had significantly larger tumor sizes and prevalence of macroadenomas. In male patients, the preoperative PLR levels showed a weak negative correlation with age (r=-0.304, p < 0.036) and a positive correlation with tumor size (r=0.555, p < 0.001) and cavernous sinus invasion (r=0.339, p < 0.018). In females, preoperative PRL was significantly associated only with tumor size and Knosp grade. CONCLUSION: Prolactin-Secreting Pituitary Adenomas (PSPAs) are more common in women than men and are characterized by larger and more invasive tumors with high PRL levels at diagnosis. The PRL level and tumor size before surgery can predict early biochemical remission in both males and females with an accuracy of 58.3% and 68.8%, respectively.

4.
Geroscience ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563864

RESUMO

Epidemiological studies report an elevated risk of Parkinson's disease (PD) in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed dipeptidyl peptidase 4 (DPP-4) inhibitors. With an objective to characterize clinically translatable doses of DPP-4 inhibitors (gliptins) in a well-characterized PD rodent model, sitagliptin, PF-00734,200 or vehicle were orally administered to rats initiated either 7-days before or 7-days after unilateral medial forebrain bundle 6-hydroxydopamine (6-OHDA) lesioning. Measures of dopaminergic cell viability, dopamine content, neuroinflammation and neurogenesis were evaluated thereafter in ipsi- and contralateral brain. Plasma and brain incretin and DPP-4 activity levels were quantified. Furthermore, brain incretin receptor levels were age-dependently evaluated in rodents, in 6-OHDA challenged animals and human subjects with/without PD. Cellular studies evaluated neurotrophic/neuroprotective actions of combined incretin administration. Pre-treatment with oral sitagliptin or PF-00734,200 reduced methamphetamine (meth)-induced rotation post-lesioning and dopaminergic degeneration in lesioned substantia nigra pars compacta (SNc) and striatum. Direct intracerebroventricular gliptin administration lacked neuroprotective actions, indicating that systemic incretin-mediated mechanisms underpin gliptin-induced favorable brain effects. Post-treatment with a threefold higher oral gliptin dose, likewise, mitigated meth-induced rotation, dopaminergic neurodegeneration and neuroinflammation, and augmented neurogenesis. These gliptin-induced actions associated with 70-80% plasma and 20-30% brain DPP-4 inhibition, and elevated plasma and brain incretin levels. Brain incretin receptor protein levels were age-dependently maintained in rodents, preserved in rats challenged with 6-OHDA, and in humans with PD. Combined GLP-1 and GIP receptor activation in neuronal cultures resulted in neurotrophic/neuroprotective actions superior to single agonists alone. In conclusion, these studies support further evaluation of the repurposing of clinically approved gliptins as a treatment strategy for PD.

5.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567902

RESUMO

Dopamine and orexins (hypocretins) play important roles in regulating reward-seeking behaviors. It is known that hypothalamic orexinergic neurons project to dopamine neurons in the ventral tegmental area (VTA), where they can stimulate dopaminergic neuronal activity. Although there are reciprocal connections between dopaminergic and orexinergic systems, whether and how dopamine regulates the activity of orexin neurons is currently not known. Here we implemented an opto-Pavlovian task in which mice learn to associate a sensory cue with optogenetic dopamine neuron stimulation to investigate the relationship between dopamine release and orexin neuron activity in the lateral hypothalamus (LH). We found that dopamine release can be evoked in LH upon optogenetic stimulation of VTA dopamine neurons and is also naturally evoked by cue presentation after opto-Pavlovian learning. Furthermore, orexin neuron activity could also be upregulated by local stimulation of dopaminergic terminals in the LH in a way that is partially dependent on dopamine D2 receptors (DRD2). Our results reveal previously unknown orexinergic coding of reward expectation and unveil an orexin-regulatory axis mediated by local dopamine inputs in the LH.


Assuntos
Região Hipotalâmica Lateral , Área Tegmentar Ventral , Camundongos , Animais , Orexinas , Área Tegmentar Ventral/fisiologia , Dopamina , Receptores de Dopamina D2 , Neurônios Dopaminérgicos , Recompensa
6.
Neuronal Signal ; 8(1): NS20230057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38572143

RESUMO

Research into learning and memory over the past decades has revealed key neurotransmitters that regulate these processes, many of which are evolutionarily conserved across diverse species. The monoamine neurotransmitter dopamine is one example of this, with countless studies demonstrating its importance in regulating behavioural plasticity. However, dopaminergic neural networks in the mammalian brain consist of hundreds or thousands of neurons, and thus cannot be studied at the level of single neurons acting within defined neural circuits. The nematode Caenorhabditis elegans (C. elegans) has an experimentally tractable nervous system with a completely characterized synaptic connectome. This makes it an advantageous system to undertake mechanistic studies into how dopamine encodes lasting yet flexible behavioural plasticity in the nervous system. In this review, we synthesize the research to date exploring the importance of dopaminergic signalling in learning, memory formation, and forgetting, focusing on research in C. elegans. We also explore the potential for dopamine-specific fluorescent biosensors in C. elegans to visualize dopaminergic neural circuits during learning and memory formation in real-time. We propose that the use of these sensors in C. elegans, in combination with optogenetic and other light-based approaches, will further illuminate the detailed spatiotemporal requirements for encoding behavioural plasticity in an accessible experimental system. Understanding the key molecules and circuit mechanisms that regulate learning and forgetting in more compact invertebrate nervous systems may reveal new druggable targets for enhancing memory storage and delaying memory loss in bigger brains.

7.
J Pineal Res ; 76(3): e12951, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572848

RESUMO

Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.


Assuntos
Melatonina , Animais , Melatonina/metabolismo , Neuroproteção , Retina/metabolismo , Receptores de Melatonina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Mamíferos/metabolismo
8.
Mater Today Bio ; 26: 101039, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38596825

RESUMO

In order to improve the wound repair environment, this research has successfully developed a new multifunctional hydrogel dressing, which has strong adaptability and can accelerate wound healing. Pioneering the development of metal-ion-controlled hydrogel dressings, this research integrates dopamine and imidazole double crosslinked networks with metal-ion coordination. The resulting hydrogel dressing exhibits a notable antibacterial effect and exceptional mechanical properties, withstanding pressures of up to 12 kPa, tensions of 25 kPa, and maintaining skin adhesion at 6 kPa. Furthermore, the dressing can self-heal within only 7-8 s post-injection. Impressively, the hydrogel achieves complete biodegradation within a short timeframe (37 h). Notably, the use of various metal ions facilitates painless peeling during the degradation period, perfectly aligning with the requirements of an ideal wound dressing. This study has made significant progress in the fields of trauma repair and materials, providing strong solutions for dealing with harsh post-traumatic environments.

9.
Clin Neurol Neurosurg ; 240: 108261, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38599043

RESUMO

This report presents a case of Alexander disease showing clinical characteristics mimicking progressive supranuclear palsy (PSP). A 67-year-old woman complaining of motor disturbance exhibited severe atrophy of medulla, spinal cord, and midbrain tegmentum, as well as periventricular hyperintensity on cerebral MRI. Genetic analysis identified a novel in-frame deletion/insertion mutation in the exon 3 of the GFAP gene. Interestingly, neurological findings and decreased striatal uptake in dopamine transporter SPECT were suggestive of PSP. A novel GFAP gene mutation found in the present case may cause the unique clinical phenotype, which should be differentiated from PSP.

10.
J Neuroendocrinol ; : e13389, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599683

RESUMO

Hunger increases the motivation for calorie consumption, often at the expense of low-taste appeal. However, the neural mechanisms integrating calorie-sensing with increased motivation for calorie consumption remain unknown. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus sense hunger, and the ingestion of caloric solutions promotes dopamine release in the absence of sweet taste perception. Therefore, we hypothesised that metabolic-sensing of hunger by AgRP neurons would be essential to promote dopamine release in the nucleus accumbens in response to caloric, but not non-caloric solutions. Moreover, we examined whether metabolic sensing in AgRP neurons affected taste preference for bitter solutions under conditions of energy need. Here we show that impaired metabolic sensing in AgRP neurons attenuated nucleus accumbens dopamine release in response to sucrose, but not saccharin, consumption. Furthermore, metabolic sensing in AgRP neurons was essential to distinguish nucleus accumbens dopamine response to sucrose consumption when compared with saccharin. Under conditions of hunger, metabolic sensing in AgRP neurons increased the preference for sucrose solutions laced with the bitter tastant, quinine, to ensure calorie consumption, whereas mice with impaired metabolic sensing in AgRP neurons maintained a strong aversion to sucrose/quinine solutions despite ongoing hunger. In conclusion, we demonstrate normal metabolic sensing in AgRP neurons drives the preference for calorie consumption, primarily when needed, by engaging dopamine release in the nucleus accumbens.

11.
J Inorg Biochem ; 256: 112548, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38593610

RESUMO

Neuromelanin (NM) plays a well-established role in neurological disorders pathogenesis; the mechanism of action is still discussed and the investigations in this field are limited by NM's complex and heterogeneous composition, insolubility, and low availability from human brains. An alternative can be offered by synthetic NM obtained from dopamine (DA) oxidative polymerization; however, a deep knowledge of the influence of both physicochemical parameters (T, pH, ionic strength) and other compounds in the reaction media (buffer, metal ions, other catecholamines) on DA oxidation process and, consequently, on synthetic NM features is mandatory to develop reliable NM preparation methodologies. To partially fulfill this aim, the present work focuses on defining the role of temperature, buffer and metal ions on both DA oxidation rate and DA oligomer size. DA oxidation in the specific conditions is monitored by UV-Vis spectroscopy and Principal Component Analysis (PCA) is run either on the raw spectra to model the background absorption increase, related to small DA oligomers formation, or on their first derivative to rationalize DA consumption. After having studied three case studies, 3-Way PCA is applied to directly evaluate the effect of temperature and buffer type on DA oxidation in the presence of different metal ions. Despite the proof-of-concept nature of the work and the number of compounds still to be included in the investigation, the preliminary results and the possibility to further expand the chemometric approach represent an interesting contribution to the field of in vitro simulation of NM synthesis.

12.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585654

RESUMO

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Assuntos
Infecções por Klebsiella , Pulmão , Humanos , Camundongos , Animais , Pulmão/patologia , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiologia , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferação de Células , Infecções por Klebsiella/microbiologia , Camundongos Endogâmicos C57BL
13.
Front Neurosci ; 18: 1348551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586193

RESUMO

Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERß), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38565388

RESUMO

While there is extensive research on alcohol dependence, the factors that make an individual vulnerable to developing alcoholism haven't been explored much. In this study, we aim to investigate how neonatal exposure to sex hormones affects alcohol intake and the regulation of the mesolimbic pathway in adulthood. The study aimed to investigate the impact of neonatal exposure to a single dose of testosterone propionate (TP) or estradiol valerate (EV) on ethanol consumption in adult rats. The rats were subjected to a two-bottle free-choice paradigm, and the content of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens (NAcc) was measured using HPLC-ED. The expression of critical DA-related proteins in the mesolimbic pathway was evaluated through RT-qPCR and western blot analysis. Supraphysiological neonatal exposure to EV or TP resulted in increased ethanol intake over four weeks in adulthood. In addition, the DA and DOPAC content was reduced and increased in the NAcc of EV and TP-treated rats, and ß-endorphin content in the hypothalamus decreased in EV-treated rats. The VTA µ receptor and DA type 2 form short receptor (D2S) expression were significantly reduced in EV and TP male rats. Finally, in an extended 6-week protocol, the increase in ethanol consumption induced by EV was mitigated during the initial two hours post-naloxone injection. Neonatal exposure to sex hormones is a detrimental stimulus for the brain, which can facilitate the development of addictive behaviors, including alcohol use disorder.

15.
Neurobiol Sleep Circadian Rhythms ; 16: 100103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38585223

RESUMO

Day length, or photoperiod, is a reliable environmental cue encoded by the brain's circadian clock that indicates changing seasons and induces seasonal biological processes. In humans, photoperiod, age, and sex have been linked to seasonality in neuropsychiatric disorders, as seen in Seasonal Affective Disorder, Major Depressive Disorder, and Bipolar Disorder. The nucleus accumbens is a key locus for the regulation of motivated behaviors and neuropsychiatric disorders. Using periadolescent and young adult male and female mice, here we assessed photoperiod's effect on serotonin and dopamine tissue content in the nucleus accumbens core, as well as on accumbal synaptic dopamine release and uptake. We found greater serotonin and dopamine tissue content in the nucleus accumbens from young adult mice raised in a Short winter-like photoperiod. In addition, dopamine release and clearance were greater in the nucleus accumbens from young adult mice raised in a Long summer-like photoperiod. Importantly, we found that photoperiod's effects on accumbal dopamine tissue content and release were sex-specific to young adult females. These findings support that in mice there are interactions across age, sex, and photoperiod that impact critical monoamine neuromodulators in the nucleus accumbens which may provide mechanistic insight into the age and sex dependencies in seasonality of neuropsychiatric disorders in humans.

16.
Environ Toxicol Pharmacol ; 108: 104436, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599507

RESUMO

Plastics pose a hazard to the environment. Although plastics have toxicity, microplastics (MPs) and nanoplastics (NPs) are capable of interacting with the rest pollutants in the environment, so they serve as the carriers and interact with organic pollutants to modulate their toxicity, thus resulting in unpredictable ecological risks. PS-NPs and TDCIPP were used expose from 2 h post-fertilization (hpf) to 150 days post-fertilization (dpf) to determine the bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its potential effects on neurodevelopment in F1 zebrafish (Danio rerio) offspring under the action of polystyrene nano plastics (PS-NPs). The exposure groups were assigned to TDCIPP (0, 0.4, 2 or 10 µg/L) alone group and the PS-NPs (100 µg/L) and TDCIPP co-exposed group. F1 embryos were collected and grown in clean water to 5 dpf post-fertilization. PS-NPs facilitated the bioaccumulation of TDCIPP in the gut, gill, head,gonad and liver of zebrafish in a sex-dependent manner and promoted the transfer of TDCIPP to their offspring, thus contributing to PS-NPs aggravated the inhibition of offspring development and neurobehavior of TDCIPP-induced. In comparison with TDCIPP exposure alone, the combination could notably down-regulate the levels of the dopamine neurotransmitter, whereas the levels of serotonin or acetylcholine were not notably different. This result was achieved probably because PS-NPs interfered with the TDCIPP neurotoxic response of zebrafish F1 offspring not through the serotonin or acetylcholine neurotransmitter pathway. The increased transfer of TDCIPP to the offspring under the action of PS-NPs increased TDCIPP-induced transgenerational developmental neurotoxicity, which was proven by a further up-regulation/down-regulation the key gene and protein expression related to dopamine synthesis, transport, and metabolism in F1 larvae, in contrast to TDCIPP exposure alone. The above findings suggested that dopaminergic signaling involvement could be conducive to the transgenerational neurodevelopmental toxicity of F1 larval upon parental early co-exposure to PS-NPs and TDCIPP.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38587645

RESUMO

PURPOSE: Toludesvenlafaxine is a recently developed antidepressant that belongs to the triple reuptake inhibitor class. Despite the in vitro evidence that toludesvenlafaxine inhibits the reuptake of serotonin (5-HT), norepinephrine (NE) and dopamine (DA), there is no in vivo evidence that toludesvenlafaxine binds to DAT and increases DA level, a mechanism thought to contribute to its favorable clinical performance. METHODS: Positron emission tomography/computed tomography (PET/CT) was used to examine the DAT binding capacity in healthy rats and human subjects and microdialysis was used to examine the striatal DA level in rats. [18F]FECNT and [11C]CFT were used as PET/CT radioactive tracer for rat and human studies, respectively. RESULTS: In rats, 9 mg/kg of toludesvenlafaxine hydrochloride (i.v.) followed by an infusion of 3 mg/kg via minipump led to the binding rate to striatum DAT at 3.7 - 32.41% and to hypothalamus DAT at 5.91 - 17.52% during the 45 min scanning period. 32 mg/kg oral administration with toludesvenlafaxine hydrochloride significantly increased the striatal DA level with the AUC0 - 180 min increased by 63.9%. In healthy volunteers, 160 mg daily toludesvenlafaxine hydrochloride sustained-release tablets for 4 days led to an average occupancy rates of DAT at 8.04% ± 7.75% and 8.09% ± 7.00%, respectively, in basal ganglion 6 h and 10 h postdose. CONCLUSION: These results represent the first to confirm the binding of toludesvenlafaxine to DAT in both rats and humans using PET/CT, and its elevation of brain DA level, which may help understand the unique pharmacological and functional effects of triple reuptake inhibitors such as toludesvenlafaxine. GOV IDENTIFIERS: NCT05905120. Registered 14 June 2023. (retrospectively registered).

18.
Biochem Pharmacol ; : 116228, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643909

RESUMO

Two recently discovered DRD2 mutations, c.634A > T, p.Ile212Phe and c.1121 T > G, p.Met374Arg, cause hyperkinetic movement disorders that have overlapping features but apparently differ in severity. The two known carriers of the Met374Arg variant had early childhood disease onset and more severe motor, cognitive, and neuropsychiatric deficits than any known carriers of the Ile212Phe variant, whose symptoms were first apparent in adolescence. Here, we evaluated if differences in the function of the two variants in cultured cells could explain differing pathogenicity. Both variants were expressed less abundantly than the wild type receptor and exhibited loss of agonist-induced arrestin binding, but differences in expression and arrestin binding between the variants were minor. Basal and agonist-induced activation of heterotrimeric Gi/o/z proteins, however, showed clear differences; agonists were generally more potent at Met374Arg than at the Ile212Phe or wild type variants. Furthermore, all Gα subtypes tested were constitutively activated more by Met374Arg than by Ile212Phe. Met374Arg produced greater constitutive inhibition of cyclic AMP accumulation than Ile212Phe or the wild type D2 receptor. Met374Arg and Ile212Phe were more sensitive to thermal inactivation than the wild type D2 receptor, as reported for other constitutively active receptors, but Ile212Phe was affected more than Met374Arg. Additional pharmacological characterization suggested that the mutations differentially affect the shape of the agonist binding pocket and the potency of dopamine, norepinephrine, and tyramine. Molecular dynamics simulations provided a structural rationale for enhanced constitutive activation and agonist potency. Enhanced constitutive and agonist-induced G protein-mediated signaling likely contributes to the pathogenicity of these novel variants.

19.
Br J Pharmacol ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644533

RESUMO

BACKGROUND AND PURPOSE: Methamphetamine (METH) use disorder has risen dramatically over the past decade, and there are currently no FDA-approved medications due, in part, to gaps in our understanding of the pharmacological mechanisms related to METH action in the brain. EXPERIMENTAL APPROACH: Here, we investigated whether transient receptor potential ankyrin 1 (TRPA1) mediates each of several METH abuse-related behaviours in rodents: self-administration, drug-primed reinstatement, acquisition of conditioned place preference, and hyperlocomotion. Additionally, METH-induced molecular (i.e., neurotransmitter and protein) changes in the brain were compared between wild-type and TRPA1 knock-out mice. Finally, the relationship between TRPA1 and the dopamine transporter was investigated through immunoprecipitation and dopamine reuptake assays. KEY RESULTS: TRPA1 antagonism blunted METH self-administration and drug-primed reinstatement of METH-seeking behaviour. Further, development of METH-induced conditioned place preference and hyperlocomotion were inhibited by TRPA1 antagonist treatment, effects that were not observed in TRPA1 knock-out mice. Similarly, molecular studies revealed METH-induced increases in dopamine levels and expression of dopamine system-related proteins in wild-type, but not in TRPA1 knock-out mice. Furthermore, pharmacological blockade of TRPA1 receptors reduced the interaction between TRPA1 and the dopamine transporter, thereby increasing dopamine reuptake activity by the transporter. CONCLUSION AND IMPLICATIONS: This study demonstrates that TRPA1 is involved in the abuse-related behavioural effects of METH, potentially through its modulatory role in METH-induced activation of dopaminergic neurotransmission. Taken together, these data suggest that TRPA1 may be a novel therapeutic target for treating METH use disorder.

20.
Nat Prod Res ; : 1-10, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646872

RESUMO

Parkinson's disease (PD) is characterised by the gradual demise of dopaminergic neurons. In recent years, there has been significant interest in herbal treatments. In this study, hesperetin nanoparticles (HTN) were developed and compared their anti-PD potential with hesperetin (HT) on rotenone induced PD rats. Molecular docking was also performed to evaluate the binding affinity of hesperetin on pathological protein, i.e. D2 dopamine receptors (DR2), using Auto Dock Vina tools. The results showed a higher binding relationship of HTN on dopamine receptors (-7.2 kcal/mol) compared to L-dopa (-6.4 kcal/mol), supporting their potential as drug candidates for PD therapy. HTN was effectively synthesised using the fabrication technique and characterised by zeta potential and SEM analysis. HTN had favourable characteristics, including a size of 249.8 ± 14.9 nm and a Z-potential of -32.9 mV. After being administered orally, HTN demonstrated a notable anti-Parkinsonian effects, indicated by the significant improvement in motor function as assessed by the rota rod test (p < .001***), pole test (p < .001***), stair test (p < .01**), wood walk test (p < .01**) and an increase in substantia nigra (SN) antioxidant levels, CAT (p < .001***), SOD (p < .001***), GSH (p < .01**). Additionally, HTN led to increased dopamine levels (p < .01**) and a decrease in the oxidant system, MDA levels (p < .01**). Furthermore, histopathological examination revealed decreased SN neuronal necrosis in diseased animals treated with HTN compared to those treated with HT in a rat model of Parkinson's disease. Therefore, HTN can be regarded as a viable platform for efficient therapy of PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...